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Extended Abstract 

Energy system models are a critical tool used to evaluate the potential future impacts of energy 

and environmental policy. Given the expansive system boundaries and multi-decadal timescales 

involved in model projections, addressing large future uncertainties in these models is a key 

challenge. A common approach is to build larger models with greater complexity to deal with 

structural uncertainty, and run a few highly detailed scenarios under different input assumptions 

to address parametric uncertainty. The result is often large and inflexible models used to conduct 

limited scenario analysis that offers little insight. 

Our research at North Carolina State University has focused on producing sound, policy relevant 

insight through improved scenario and uncertainty analysis. We have developed Tools for 

Energy Model Optimization and Analysis (Temoa), a bottom-up, technology rich energy system 

model embedded within a larger framework for analysis. Temoa includes two key features that 

make it unique within the energy modeling community: (1) all source code and data are publicly 

archived online using a modern revision control system, and (2) the model was designed to 

operate in a high performance computing environment in order to facilitate rigorous uncertainty 

analysis (Hunter et al, 2013). 

We observe two critical shortcomings with the standard approach to scenario analysis. First, 

most model-based analyses assume a set of exogenous scenario-based assumptions to capture 

potential outcomes. While the resultant family of scenarios is meant to capture the range of 

potential future outcomes, they are of limited value to decision makers who must make a single 

set of near-term decisions before uncertainty is resolved (Morgan and Keith, 2008). Second, by 

focusing on changes to exogenous parameters, conventional scenario analysis tends to focus on 

parametric rather than structural uncertainty. Yet structural uncertainty, which refers to the 

imperfect and incomplete nature of the model, has a large influence on model results. The poor 

performance associated with past efforts to predict future energy outcomes supports this 

assertion (Craig et al., 2002). Below, we discuss our approach to address these issues. 

Rather than running a set of independent scenarios, parameter uncertainty can be incorporated 

within the model formulation by performing stochastic optimization. This technique involves 

building an event tree and simultaneously optimizing over all specified future outcomes, each 

weighted by a subjective probability of occurrence (Loulou et al., 2004). The resultant stochastic 

solution represents a near-term hedging strategy that accounts for potential future outcomes and 

puts the decision maker in a position to take recourse action as the uncertainty is resolved. 

Compared to any single perfect foresight scenario, the stochastic solution is necessarily more 

expensive because it hedges risk by simultaneously accounting for all specified scenario 

outcomes rather than assuming that future outcomes are correctly guessed at all points. A critical 
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issue is whether the resultant hedging strategy is worth the extra cost. There are two relevant cost 

metrics to assess the efficacy of the hedging strategy: (1) the expected cost of perfect information 

(EVPI), which is the difference in cost between the stochastic solution and the expected value of 

the perfect foresight scenarios (Clemen and Reilly, 2004), and (2) the expected cost of ignoring 

uncertainty (ECIU), which can be used to value the stochastic solution relative to planning that 

ignores future uncertainty and may require more drastic recourse action (Birge and Louveaux, 

1997; van der Weijde and Hobbs, 2012). While running the stochastic version of the model as 

well as calculating EVPI and ECIU is computationally intensive, Temoa was specifically 

designed to handle such analyses.  

To address structural uncertainty, we have implemented an optimization technique called model 

to generate alternatives (MGA). Rather than generate different scenarios based on differing 

exogenous assumptions, the MGA algorithm forces an optimization model to search the feasible, 

near-optimal region of the solution space for alternative solutions that are maximally different in 

decision space. Brill et al. (1982) describe the steps associated with the Hop-Skip-Jump (HSJ) 

MGA method as follows: (1) obtain an initial optimal solution by any method, (2) add a user-

specified amount of slack to the value of the objective function(s), (3) encode the adjusted 

objective function value(s) as an additional upper bound constraint(s), (4) formulate a new 

objective function that minimizes the weighted sum of decision variables that appeared in the 

previous solutions, (5) iterate the re-formulated optimization, and (6) terminate the MGA 

procedure when no significant changes to decision variables are observed in the solutions. MGA 

allows modelers and decision-makers to quickly and efficiently probe the decision space in order 

to identify plausible alternative options. Previous work has illustrated the utility of MGA through 

a simple energy application (DeCarolis, 2011). 

The presentation will include a more detailed description of stochastic optimization and MGA, 

and also present an application to a simplified energy system using Temoa. 
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