

Technology pathways for a low-carbon energy transition – critical insights from the energy system model UKTM

Birgit Fais, Hannah Daly, Ilkka Keppo

<u>b.fais@ucl.ac.uk</u>

wholeSEM Annual Conference 2014

July 8th 2014

Motivation and objective

Low-carbon energy transition requires major technological changes

BUT: Availability, cost and performance of these technologies is highly uncertain

From the Carbon Plan:

"But there are **some major uncertainties**. How far can we reduce **demand**? Will sustainable **biomass** be scarce or abundant? To what extent will **electrification** occur across transport and heating? Will **wind, CCS or nuclear** be the cheapest method of generating large-scale low carbon electricity? How far can **aviation, shipping, industry** and **agriculture** be decarbonised?"

> Use energy systems modelling to explore the impact of technology uncertainty on the long-term development of the UK energy system

Research questions

- Which technologies are most crucial to realize the UK's long-term emission reduction commitment?
- Are there interdependencies between the use of different technologies?
- How are carbon prices and energy system costs influenced by the non-availability of important low-carbon options?

Agenda for today

- Overview on the new energy system model UKTM
- Reference case: The low-carbon transition in the UK
- The impact of technology uncertainty
- Outlook on wholeSEM research strands at UCL

1. UKTM – The UK TIMES energy system model

UKTM is the successor to UK MARKAL

Overview

Integrated energy systems model - Least cost optimization - Partial equilibrium model - Technology rich - sensitivity and uncertainty analysis

New features

- Non-CO₂ greenhouse gases
- Non-energy mitigation options
- Energy storage and other energy infrastructures
- New time slices (4 intra-day x 4 seasonal)
- New industry sector module

Development process

- **Transparency** at the forefront of development (data, assumptions, structure is clear and traceable, full replicability of results, comprehensive QA processes)
- Full sectoral data update & 2010 base-year recalibration
- User constraints categorized & explicit
- UKTM will be fully open-source from September 2014

2. The low-carbon transition in the UK

The reference case: 80% GHG emission reduction until 2050

- Reduction until 2030 mainly due to energy efficiency improvements in electricity generation & industry
- Rising consumption after 2030 can be attributed to rising electricity consumption & increasing use of biomass (partially with CCS)
- Use of biomass and nuclear energy rises by about 5 times until 2050
- Consumption of petroleum products is more than halved
- Other renewables remain insignificant

≜UC L

The reference case: Electricity generation...

- Coal
 Nat. Gas
 Oil
 Biomass CCS
 Wind
 Nuclear
 Imports
- Coal CCS
 Nat.Gas CCS
 Biomass
 CHP
 Other RE
 Hydrogen
 Electricity

The reference case: Emission reduction and carbon prices

≜UC

The reference case shows a consistent, least-cost pathway to achieve the UK's low-carbon energy transition, but ...

INVESTMENT scenario – How is electricity generation and consumption affected?

≜UC L

Scenario BIOMASS – How is the use of biomass compensated in the various sectors?

BARRIERS Scenario – *Do higher hurdle rates affect investment decisions?*

Transport sector

- Reduced use of hydrogen
- Stronger reliance on petroleum
- Increased use of biofuels in road transport and aviation

Industry sector

- Limited uptake of efficiency measures, esp. in the paper and iron & steel industry
- Switch from gas to electricity
- Increased use of biomass for heating

Electricity generation

To compensate for higher use of fossil fuels in end-use sectors, stronger uptake of biomass CCS (+6 GW

Residential sector

- No change in uptake of conservation measures
- Switch from electric heat pumps to gas boilers

Service sector

- No change in uptake of conservation measures
- Increased use of biomass in boilers and district heating
- Stronger use of electric boilers

PESSIMISTIC Scenario – *How is the low-carbon transition still achieved?*

Pioneering research

and skills

Oil Products

Electricity

Scenario comparison

100%

60%

80%

Services

Transport

		Change in 2050 compared to 2010		
		Energy intensity (PEC/GDP)	Reduction in final energy demand	
Energy efficiency	REFERENCE	-59%	-9%	
	INVESTMENT	-72%	-19%	
	BIOMASS	-55%	-19%	
	BARRIERS	-57%	-6%	
	PESSIMISTIC	-82%	-23%	

Achieving the low-carbon energy transition in the UK requires the availability of a variety of low-carbon energy technologies

Energy systems models can provide a comprehensive view on the long-term impact of technology uncertainty and can therefore benefit the policy making process

UCL ENERGY INSTITUTE MO	DELS				
				UCL	
Search UCL GO	UCL Home - UCL Energy Institu	ute Models			
UCL Energy Institute Models Home Models Why we use models Policy impacts of our models People Contact us UCL Energy Institute UCL Energy Institute UK Energy Research Centre UK MARKAL TIAM-UCL	Energy models The UCL Energy Institute deliver energy security. We employ a variety of methods of the models that we use. You of Please contact us if you have an Please contact us if you have an Systems and technology models > UK MARKAL > UKTM-UCL > TIAM-UCL > FSME	at the UCL Ener rs world-leading learning, research in our research including data an can also learn about why we use in ny comments or questions.	rgy Institute the and policy support on the challed alysis and modelling. At this web models and see some of the policy models models models	A A A enges of climate change and usite, you can find out about some cy impacts of our models. Network/infrastructure models > DEAM > EleServe > SHIPMod	Thank you f
	 > ESME > DynEMo > EXPANSE > OSeMOSYS 	Environmental models	Behavioural models	Other models	UCL-Energy Models: <u>www.ucl.ac.uk/</u> energy-models

ou for your attention!

> CGE-UCL

Back-up

≜UC

Energy, Economy, Engineering & Environment (E4) Interactions

LC

TIMES: Selected Advantages and Disadvantages

- Advantages
 - Well understood least-cost modelling paradigm (efficient markets)
 - International support network through the IEA's ETSAP network
 - Interactions within entire energy system
 - Coherent and transparent framework; open assumptions on data, constraints etc

• Disadvantages [and remedies]

- TIMES is data intensive (characterization of technologies and RES)
 - Data sharing and collaboration improving the situation
- Results sometimes sensitive to small changes in data assumptions
 - Stepped supply curves and market share algorithms
- Limited ability to model behavior
 - Growth constraints, "hurdle" rates, demand elasticities (Macro)
- Limited representation of economic impact of energy policy
 - TIMES Macro and other linkages
- Spatial and temporal aggregation
 - Linkages to GIS frameworks (DfT Horizons)

