## Addressing the challenge of modelling energy storage in a whole energy system

Sheila Samsatli, Nouri Samsatli, Nilay Shah

First Annual wholeSEM Conference Royal Academy of Engineering 8-9<sup>th</sup> July 2014



Centre for Process Systems Engineering Imperial College, London







# Future energy targets are driving the deployment of renewable technologies



London Array – the world's largest offshore wind farm



A solar farm



Aquamarine Power's Oyster Wave Energy

Photo credits: <u>http://www.londonarray.com/media-centre/image-library/offshore/</u> http://www.solarselections.co.uk/blog/wp-content/uploads/2012/09/ROC-solar-farm.jpg The future role for energy storage in the UK, Energy Research Partnership, 2011



### The intermittency challenge



- Renewable energy is generated when it's not needed
- Large dip in generation during high demand
- Peaking generators, e.g. gas turbines, used to balance supply and demand are expensive and produce GHG emissions



### **Energy storage solution**

Photo credit: The future role for energy storage in the UK, Energy Research Partnership, 2011



Royal Institution Battery 1807



Llyn Stwlan reservoir



*Hot water storage tank in the basement of a smart house* 

- Enables "wrong-time" energy generation from intermittent renewables
- Reduces need for peaking generators
- Improves energy use efficiency



Reference: Wikipedia



Modelling challenge: the dynamics of storage technologies occur over short time scales (<hourly), very different from the time interval in energy system planning models (>yearly)

### Tractability is an issue!



### Challenges

- We need a dynamic energy system model with a very wide range of time scales
  - Planning: years or decades
  - Seasonal: variations in demands and availability
  - Hourly (or shorter):
    - Dynamics of storage technologies
    - Variations in demands, intermittency of renewable resources
- Still need to model spatial aspects
  - Demands and availability depend on location
  - Determine location/size of technologies and storage facilities
    - Requires integer variables
  - Transport of resources (centralised vs. distributed)
- Very large scale model



### Hydrogen Supply Chain (HSC) model



Spatial element: Great Britain represented by 34 108×108 km2 square cells Temporal element: 2015-2044 divided into 5 6-year periods Last upgrade: made it a dynamic model with time intervals of 4 seasons in a year and 4 6-hr periods in a day



### Example case study



No. of variables > 1M, No. of constraints > 0.5M, Integers = 15kTook ~3 days to solve full MIP!



### Inventory profile for a whole year

#### London and the South East (cell 29) in 2039-2044





### Limitations of the HSC model

- Multi-echelon model
  - Pathways inflexible
  - Distribution within cells too complex
    - Too many binary variables
    - Big M formulation
- Too large to be extended
  - Adding a pipeline transport mode resulted in intractable problems
  - Difficult to add new technologies and resources
  - Still not enough time intervals

### Back to basics:

### A very simple MILP model with storage

Resource balance: 
$$I_{rch} + U_{rch} + \sum_{p} \alpha_{rp} P_{pch} + \sum_{c'} (Q_{rc'ch} - Q_{rcc'h}) - D_{rch} = S_{rch} - S_{rc,h-1} \quad \forall r, c, h$$
  
Production capacity constraint:  $P_{pch} \leq NP_{pc} p_{p}^{\max} \quad \forall p, c, h$   
Resource availability constraint:  $U_{rch} \leq u_{rch}^{\max} \quad \forall r, c, h$   
Storage capacity constraint:  $S_{rch} \leq s_{rc}^{\max} \quad \forall r, c, h$   
Objective function definition

| = 3   <i>p</i>   = 4 | c  = 14 No. of integ                                                       | er variables = 56                                                                                                                  |                                                                                                                                                                                                                        |
|----------------------|----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                      | h - contiguous hour                                                        | rly interval                                                                                                                       |                                                                                                                                                                                                                        |
| h                    | No. of variables                                                           | No. of constraints                                                                                                                 | Solution time (s)                                                                                                                                                                                                      |
| 24                   | 6,139                                                                      | 3,703                                                                                                                              | 7                                                                                                                                                                                                                      |
| 168                  | 42,427                                                                     | 25,879                                                                                                                             | 744                                                                                                                                                                                                                    |
| 720                  | 181,531                                                                    | 110,887                                                                                                                            | 22,248                                                                                                                                                                                                                 |
| 2,160                | 544,411                                                                    | 332,647                                                                                                                            | >155,520                                                                                                                                                                                                               |
| 8,760                | 2,207,611                                                                  | 1,349,047                                                                                                                          | ??!                                                                                                                                                                                                                    |
|                      | = 3   <i>p</i>   = 4<br>  <i>h</i>  <br>24<br>168<br>720<br>2,160<br>8,760 | = 3 $ p  = 4$ $ c  = 14$ No. of integ $h - contiguous hour h No. of variables246,13916842,427720181,5312,160544,4118,7602,207,611$ | = 3 $ p  = 4$ $ c  = 14$ No. of integer variables = 56 $h - contiguous hourly interval$ $ h $ No. of variablesNo. of constraints246,1393,70316842,42725,879720181,531110,8872,160544,411332,6478,7602,207,6111,349,047 |





### STeMES

- Spatio Temporal Model for Energy Systems
- RTN representation of energy pathways
  - same framework as the BVCM and TURN model in SynCity toolkit
- MILP formulation
- Efficient representation of time
- Detailed storage formulation
- Transport losses modelled in detail



### Hierarchical non-uniform time discretisation



Total number of time intervals  $T = |y| \times |s| \times |d| \times |h|$ e.g. for one year,  $T = 1 \times 4 \times 2 \times 24 = 192 \ll 8760$ Without storage – very easy! With storage – extra variables for initial inventories; extra constraints to link

inventories within and between time levels





### Transport

Transport task – used to model connections between cells



Resource  $r_2$  is transported from cell *i* to cell *i*', which requires  $r_1$  from cell *i* and results in waste  $r_3$  being generated in both cells



### Storage

#### An example set of **storage tasks** to store resource $r_1$ .



The "put" task transfers  $r_1$  from the cell to the store, requiring some  $r_2$  and producing some wastes  $r_3$  (e.g. CO<sub>2</sub>). The "hold" task maintains  $r_1$  in storage, which also requires some  $r_2$  but at less than 100% efficiency, the losses being converted to  $r_3$ . Finally, the "get" task retrieves  $r_1$  from storage and delivers it to the cell, requiring some  $r_5$ .



### STeMES prototype

- Developed and tested for a hypothetical island of 14 50×50km cells
- Wind generation installed at two locations
- Choice of storage technologies
  - Salt cavern available for use as hydrogen storage facility
  - Other H<sub>2</sub> storage technologies: gaseous (tank), liquid, metal hydride
- Target: transport demand to be met by hydrogen (CGH<sub>2</sub>)
- Objective: Minimum cost
- Decisions
  - Location and size/number of hydrogen production and storage facilities
  - Operation of production facilities
  - Operation of storage facilities
    - when to charge and discharge
  - Transportation of hydrogen





### Spatio-temporal input data





### Results |y| = 1, |s| = 4, |d| = 2, |h| = 24

# Snapshot of the network during weekday (d=1) in spring (s=1)



Hourly transport of CGH2 by pipeline
 Installed electrolyser capacity (3 small units)
 Installed underground storage capacity



#### Storage discharging rate (MW)





### **Resource Utilisation**

- Without storage, the scenario is infeasible
- BUT with storage, only a fraction of the available wind energy is needed!





The rate of operation of
 electrolyser is effectively constant





Results |y| = 1, |s| = 4, |d| = 2, |h| = 24

Hourly inventory of CGH<sub>2</sub> in the storage for a whole year





### Benchmarking

No. of integers = 336, relative tolerance = 0.1%

| Run<br>ID | <b>V</b> | 5 | <i>d</i> | <i>h</i> | No. of<br>variables | No. of constraints | Solution<br>time (s) |
|-----------|----------|---|----------|----------|---------------------|--------------------|----------------------|
| а         | 1        | 1 | 1        | 24       | 32,823              | 98,631             | 7                    |
| b         | 1        | 1 | 2        | 24       | 64,959              | 196,911            | 272                  |
| С         | 1        | 2 | 2        | 24       | 129,399             | 393,639            | 2,543                |
| d         | 1        | 4 | 2        | 24       | 258,279             | 787,095            | 69,480               |

- All runs determined 45.4 MW of electrolysis capacity installed in cells 1 and 14, H<sub>2</sub> transport by pipeline and underground storage.
- However, the runs with fewer time intervals underestimated the storage capacity.





### If underground storage is not an option

demand.

|y|=1, |s|=1, |d|=2, |h|=24



Installed electrolyser capacity (3 small units)
 Installed CGH<sub>2</sub>S capacity (1 small unit each)



### Next steps

- Real case studies (e.g. UK scenarios)
- Add more resources and technologies
- Exploit the full potential of the nonuniform hierarchical discretisation method
  - E.g. Use fewer *non-uniform* hourly intervals
- Additional decomposition methods
  - Benders decomposition did not work
  - Test in-house approaches



Source: The Electricity Storage Network. Development of electricity in the national interest. May 2014



### Conclusions

- Storage is a key-enabling technology for meeting the energy demands using renewable resources
  - Without storage the example problem is infeasible
  - With storage, only a small fraction of available primary resource is used and the generation technology operates effectively at a constant rate
- To model storage accurately, hourly or shorter intervals are needed
  - In the example, four seasons are also needed
- Model tractability is a big challenge
  - Even the simplest model cannot handle a whole year at an hourly level
  - Hierarchical time decomposition allows a whole year (and longer planning horizon) to be considered by exploiting periodicity in the data