

Cambridge Centre for Climate Science

Towards the development of a community Earth system model.

Alexander T. Archibald.

Department of Chemistry, University of Cambridge & NCAS Climate

wholeSEM conference, University of Cambridge, Cambridge, UK 6th July 2015.

www.ncas.ac.uk

Climate changes from time to time.

But climate is changing rapidly - now.

NATURAL ENVIRONMENT RESEARCH COUNCIL

Air pollution is changing.

1

London 1952

(d) Road

2

(h) Baseline

3

1

õ

4

12

16

The sources, types and their geographical distributions of air pollution are changing.

Air pollution one of the top "killers" China: 500,000 /yr USA: 200,000/yr World: 7,000,000 /yr

The energy industry as a source.

Total emissions of NOx (log10)

Fraction Energy

The problems we face are coupled.

The problems we face are complex.

Development of atmospheric models

$$\frac{d}{dt} = \frac{\partial}{\partial t} + u \frac{\partial}{\partial x} + v \frac{\partial}{\partial y} + w \frac{\partial}{\partial z} = \frac{\partial}{\partial t} + v \cdot \nabla$$

$$dQ = dU + dW$$

$$\bar{a}_{l} = \frac{d\bar{v}}{dt} = \frac{\partial\bar{v}}{\partial t} + (\bar{v} \cdot \nabla)\bar{v}$$

$$+ \nabla \cdot (vE) \approx \rho_{a} \frac{\theta_{v}}{T_{v}} \frac{dQ}{dt}$$

$$\frac{F_{c}}{M_{a}} = fk \times v$$

$$L = -\frac{u_{*}^{3}\bar{\theta}_{v}}{kg(w'\theta'_{v})_{s}} = \frac{u_{*}^{2}\bar{\theta}_{v}}{kg\theta_{*}}$$

$$\frac{F_{g}}{M_{a}} = \frac{F_{g}^{*}}{M_{a}} + \frac{F_{r}}{M_{a}} = -\nabla\bar{v}$$

$$E_{p} = hv = \frac{hc}{\lambda}$$

$$\frac{F_{p}}{M_{a}} = -\frac{1}{\rho_{a}}\nabla\rho_{a}$$

$$E_{\lambda} = I_{\lambda} \int_{0}^{2\pi} \int_{0}^{\pi} \sin\theta \, d\bar{\theta} \, d\phi$$

$$\frac{F_{v}}{M_{a}} = -\frac{1}{\rho_{a}}(\nabla \cdot \rho_{a}K_{m}\nabla)$$
National Centre for
Dp.i = \frac{k_{B}T}{6\pi r_{i}\eta_{a}}G_{i}
$$\frac{F_{v}}{M_{a}} = -\frac{1}{\rho_{a}}(\nabla \cdot \rho_{a}K_{m}\nabla)$$

Numerical modelling of air pollution

Global simulation of carbon monoxide (CO) produced from incomplete combustion. Major sources include fires, industry, transport.

Towards models of the Earth system

UKESM (UK Earth System Model)

JWCRP – a partnership in weather and climate research

Overriding objectives:

- To develop and apply a world-leading Earth System Model
- while growing a community of UK ESM scientists

UKESM is a NERC/Met. Office collaboration, pooling expertise and resources around a common ESM development/evaluation effort.

UKESM has a core development team (of 16) funded equally by NERC & Met. Office and builds on other NERC/MO collaborations developing component models for the UM system (e.g. JULES, UKCA, NEMO etc)

The UKESM core group is responsible for putting together, applying & evaluating UKESM, building on the physical coupled model HadGEM.

UKESM1 will be the UK community contribution to CMIP6

The core group integrates component developments into a full ESM

The limitation with ESM for projection

The limitation with ESM for policy

wholeSEM -> wholeESM

