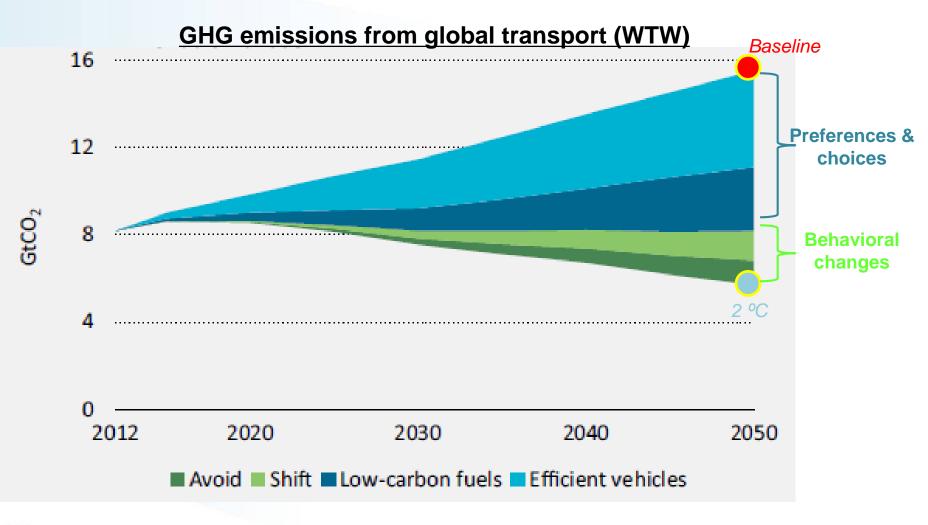


Improving the behavioral realism of global integrated assessment models: an application to consumers' vehicle choices


wholeSEM Annual Conference Cambridge, UK 6-7th July, 2015

David McCollum, Keywan Riahi, Volker Krey (IIASA) Charlie Wilson, Hazel Pettifor (UEA) Kalai Ramea (UC-Davis) Zhenhong Lin (ORNL) Oreane Edelenbosch (PBL)

IIASA, International Institute for Applied Systems Analysis

There's more to modeling transport "behavior" than just mode choice

Source: IEA Energy Technology Perspectives 2015 (Fig. 1.15)

ADVANCE project

- EU-FP7 project funded for four years (01/2013 12/2016)
 - ADVANCE: "Advanced Model Development and Validation for Improved Analysis of Costs and Impacts of Mitigation Policies"
- Integrated assessment and energy-economy modeling teams:

PIK (DE; REMIND, MAgPIE), <u>IIASA (AT; MESSAGE)</u>,
PBL (NL; IMAGE/TIMER), FEEM (IT; WITCH),
IPTS (EU; GEM-E3, POLES), <u>UCL (UK; TIAM-UCL)</u>,
UPMF, Enerdata (FR; POLES), ICCS/NTUA (GR; PRIMES, GEM-E3)
CIRED (FR; IMACLIM)

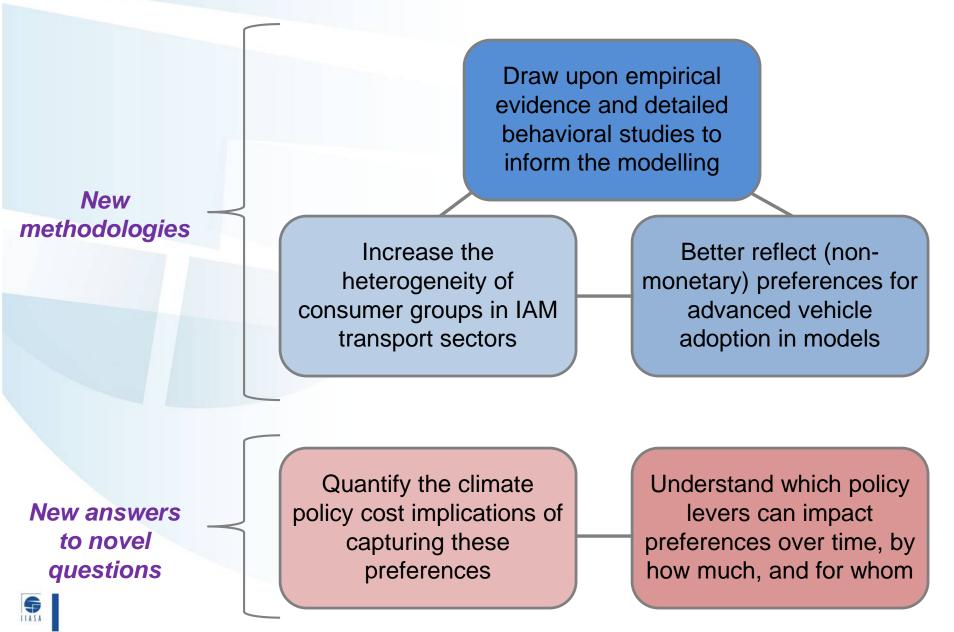
• Topical research teams:

DLR (DE; RE integration & resources),

UEA (UK; consumer choice) & Utrecht University (NL; energy demand),

NTNU (NO; Material flows & LCA)

- International collaborators:
 - Non-EU modeling teams: JGCRI (GCAM), NCAR (iPETS), NIES (AIM), RITE (DNE21+)
 - Further international expertise: NREL (renewable energy sources), PIAMDDI & EMF (Model diagnostics & comparison), Simon Fraser Univ. (energy demand)


ADVANCE is all about developing next-generation models...

- <u>End-use technologies</u> providing energy services, drivers of energy demand, and potentials for energy efficiency improvements (WP2)
- <u>Heterogeneity</u> of consumer preferences, and how behavioral changes affect energy demand (WP3)
- **Innovation**, technological change and uncertainty (WP4)
- <u>Supply-side bottlenecks</u>: system integration of variable renewable electricity (VRE), material and energy requirements, non-energy infrastructure, land-water-energy-nexus (WP5)

Objectives of ADVANCE WP3

(Task 3.1: Improving the representation of demand-side heterogeneity in IA and E4 models)

Research Questions

- Which consumer/driver attributes could/should be incorporated into IAMs in order to improve transport sector heterogeneity and behavioral realism?
- How are IAM transport scenarios impacted by these improved representations of heterogeneity and behavior? (w.r.t. technology choice, climate policy costs, etc.)
- What incentives (policy and financial) might help to nudge consumer/driver behavior in a desired direction?

Evidence from the empirical literature

(1) How important and/or useful for IAMs are different behavioral features for vehicle adoption?

(2) Which features can be feasibly implemented in global models?

Behaviour	Effect size / influence on choice								
Hotorogonoouo	Age	high							
	Value orientation	medium – Iow							
Heterogeneous	Gender	medium							
decision makers	Environmental Awareness	high - medium							
	Education	medium-low							
Non-optimising heuristics	Driving practices	low							
Non-monetary benefits	Refuelling network	high							
	CO_2 emissions	high - medium							
	Range, battery time, warranties	high							
	Refuelling location	high - medium							
Risk preferences	Vehicle range	high - medium							
(discount rates)	Fuel savings	medium							
	Social influences	high - medium							
Social influences	Neighbourhood effects	high - medium							
	Refuelling density	high							
Contextual constraints	Refuelling location	high							
	Incentives	high							
Source: Pettifor and Wilson (LIFA)									

Source: Pettifor and Wilson (UEA)

Modeling approach (two-stage)

1. Disaggregate MESSAGE transport module so that the LDV market is comprised of a heterogeneous set of consumers

2. Monetize non-cost vehicle purchase considerations by bringing "disutility costs" from a vehicle choice model into MESSAGE

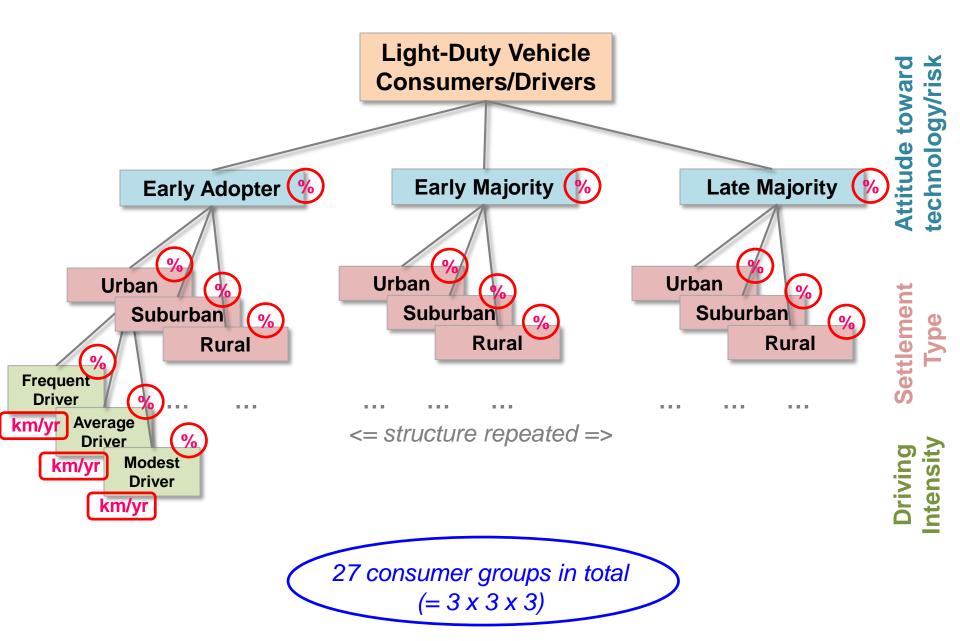
External collaborators

International Institute for Applied Systems Analysis

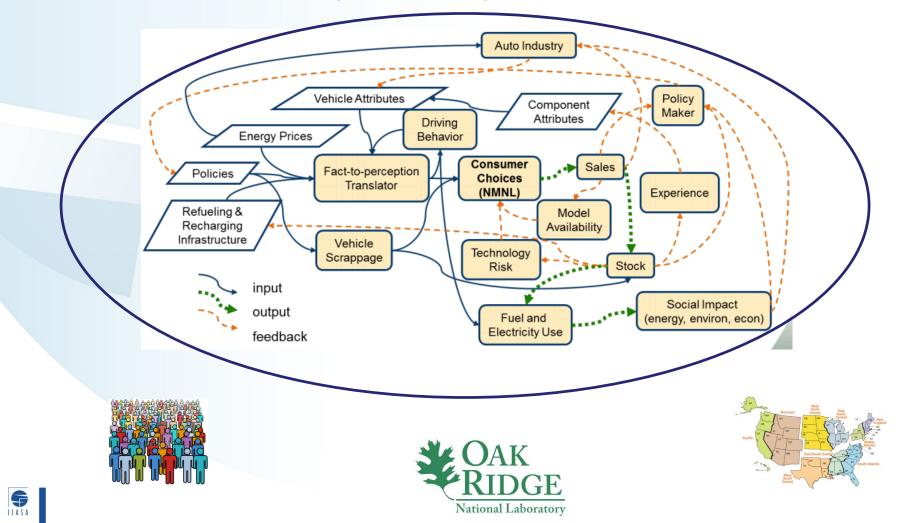
Tyndall[°]Centre[®]

for Climate Change Research

Univ. of East Anglia (C. Wilson, H. Pettifor)


IIASA

(K. Ramea, S. Yeh, D. Bunch, C. Yang)


Disaggregation of LDV market

Calculate disutility costs using the MA³T vehicle choice model

MA³T (Market Allocation of Advanced Automotive Technologies)

a scenario analysis tool for estimating market shares, social benefits and costs during LDV powertrain transitions, as resulting from technology, infrastructure, behavior, and policies

Disutility costs specific to consumers/technologies

Units: 1000\$/vehicle Year: 2020

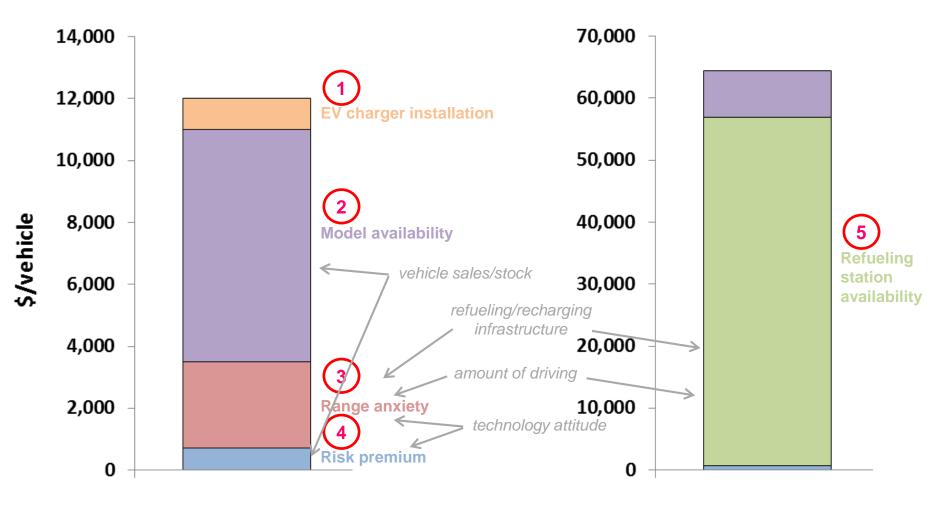
MA3T_ID	MA3T_tech_name	RUEAA	RUEAM	RUEAF	RUEMA	RUEMM	RUEMF	RULMA	RULMM	RULMF	SUEAA	SUEAM	
1	Gasoline ICE Conv	0.45	0.00	1.20	0.45	0.00	1.20	0.45	0.00	1.20	0.50	0.03	etc. for all 27
2	Diesel ICE Conv	5.89	5.17	7.09	6.52	5.79	7.72	7.13	6.41	8.33	5.98		consumer
3	Natural Gas ICE Conv	13.47	9.64	19.78	16.50	12.67	22.81	19.48	15.65	25.79	13.90	9.87	
4	Gasoline ICE HEV	1.88	1.44	2.61	1.92	1.48	2.65	1.96	1.52	2.69	1.82	1.41	groups
5	Diesel ICE HEV	3.54	2.80	4.76	5.76	5.02	6.98	7.94	7.20	9.15	3.45	2.75	
6	Natural Gas ICE HEV	13.52	9.63	19.92	16.54	12.66	22.95	19.51	15.63	25.92	13.03	9.37	
7	Gasoline PHEV10	2.68	2.31	3.34	3.70	3.33	4.36	4.69	4.33	5.36	2.62	2.28	
8	Gasoline PHEV20	3.00	2.67	3.61	5.00	4.67	5.62	6.97	6.64	7.59	2.95	2.64	
9	Gasoline PHEV40	1.37	1.14	1.91	1.46	1.23	2.00	1.55	1.31	2.08	1.34	1.13	
10	Hydrogen ICE	87.43	49.48	149.98	90.46	52.51	153.01	93.44	55.49	155.99	91.72	51.79	
11	Hydrogen FC	79.56	45.24	136.13	82.59	48.28	139.16	85.57	51.25	142.13	77.87	44.34	
12	Hydrogen FC PHEV10	53.21	27.51	103.30	56.21	30.51	106.31	59.16	33.46	109.26	52.94	27.68	
13	Hydrogen FC PHEV20	50.77	26.16	97.13	53.73	29.13	100.10	56.65	32.04	103.01	49.48	25.57	
14	Hydrogen FC PHEV40	36.72	18.89	77.32	39.70	21.87	80.30	42.63	24.80	83.23	36.26	18.81	
15	EV 100 mile	12.86	10.77	22.15	22.30	18.11	40.88	45.34	34.87	91.79	12.68	10.77	
16	EV 150 mile	17.08	11.07	26.46	30.49	18.47	49.25	65.34	35.28	112.25	16.90	11.07	
17	EV 250 mile	20.29	10.91	30.40	37.28	18.52	57.50	82.45	35.55	133.00	20.11	10.91	

Key:

RU (Rural) / SU (Suburban) / UR (Urban)

EA (Early Adopter) / EM (Early Majority) / LM (Late Majority)

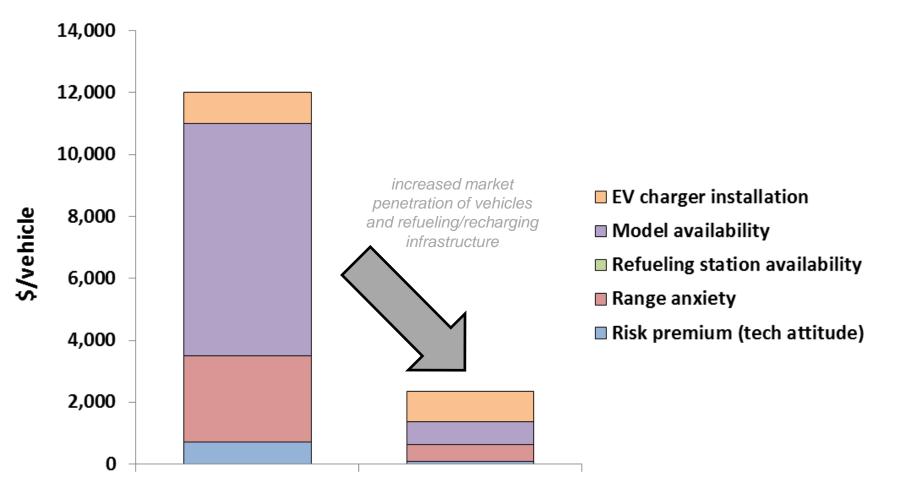
M (Modest Driver) / A (Average Driver) / F (Frequent Driver)


Example: RUEAA = Rural + Early Adopter + Average Driver

These disutility costs would be added to the standard capital costs of vehicles in models (in \$/vehicle).

Breakdown of disutility cost sub-components

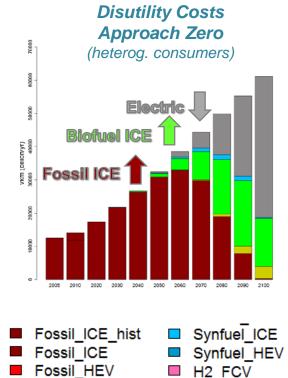
EV100


H2FCV

Region: NORTH_AM; Year: 2030; Group: UREMA

Breakdown of disutility cost sub-components

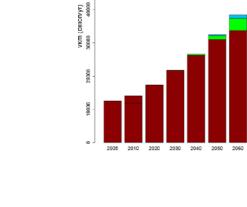
EV100


<u>Region</u>: NORTH_AM; <u>Year</u>: 2030; <u>Group</u>: UREMA

LDV effects: considering non-monetary preferences leads to lower/slower uptake of AFVs

Scenario: ~600 ppm CO₂eq in 2100 (2.7 °C)

Results: vehicle-km by vehicle type, aggregated across all consumer groups; global

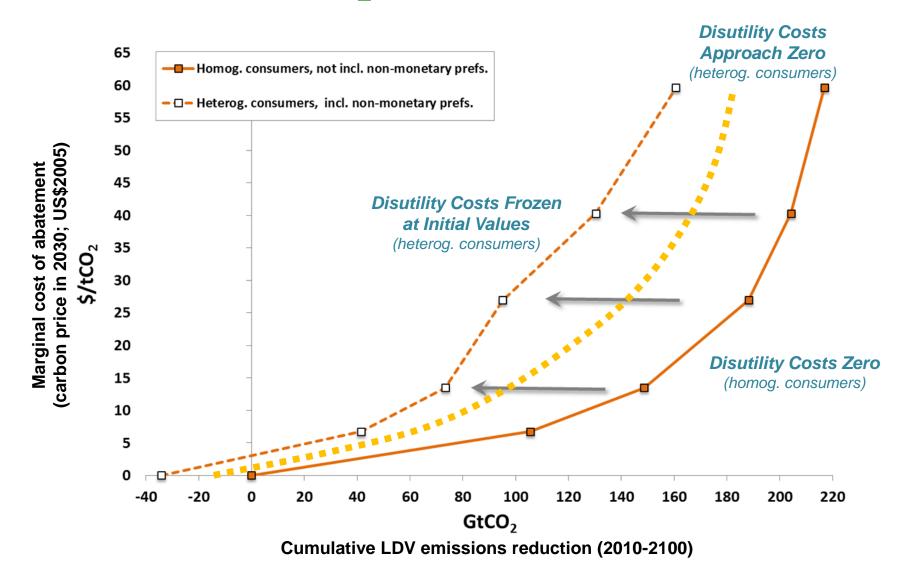

Electric

PHEV

NGA ICE

NGA HEV

Biofuel_ICE Biofuel_HEV


Disutility Costs Frozen

at Initial Values

(heterog. consumers)

Fossil Svn. ICE

System-wide effects: shift in the MAC curve for LDV CO₂ abatement (Global)

Conclusions

- 1. LDV mitigation of CO₂ likely to require stronger pricebased incentives than IAMs typically suggest
- 2. Non-priced based policies needed as a complement (e.g., vehicle/fuel emissions standards, mandates and subsidies; refueling/recharging infrastructure support)
- 3. "Behavioral IAMs" can assess a much wider suite of policies than before (not only price-based policies) => crucial for future policy analyses
- 4. Modeling behavior is not easy => inter-disciplinary; requires that modelers work closely with social scientists

Questions? Comments?

