Trade-offs in Zambia's Energy System: Identifying key drivers

Bernard Tembo, UCL Energy Institute, Central House, London, WC1H 0NN

INTRODUCTION

- Zambia is one of the fastest growing African economies.
 - There has been limited capital investment in the energy sector
- There is need to invest in the energy system in order to sustain economic growth.
- Access to clean energy is very low.
- Energy consumption contributes to deforestation
 The hydro-power dominated electricity system
- is vulnerable to climate variability.

METHODS USED

Scenario approach was used

Namibia

Accounting and optimisation models were used to analyse different scenarios.

Tanzania

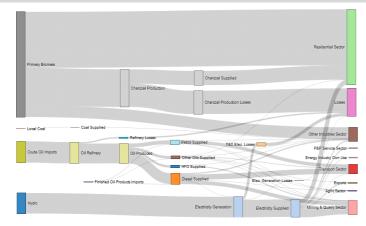
Malaw

Mozambigu

Les

aziland

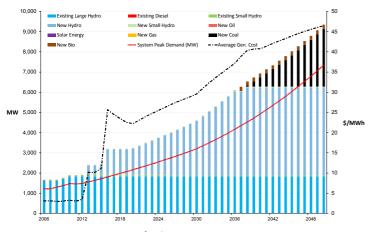
LEAP was used to build the demand-side model.


DR Cong

Botswana

South Africa

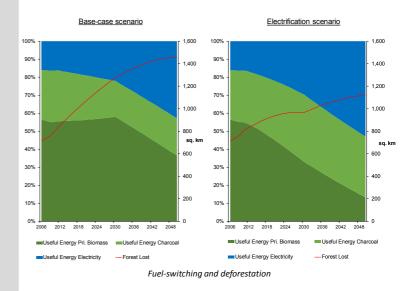
- OSeMOSYS platform was to develop the supply-side model.
- The statistics used were from IEA, ERB and Zesco (energy regulator and public utility in Zambia respectively).


RESULTS AND DISCUSSION

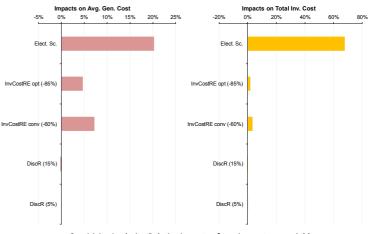
Zambia's Energy Sankey Diagram for 2010

Base-Case Scenario Main Assumptions:

- National electricity access rate is 60% by 2050.
- Copper cathode production by 2050 is 2 million tonnes.
- Under the electrification scenario, electricity access rate is 87% by 2050.



Least Cost Capacity Requirement for electricity generation versus Average Generation Cost


The average generation cost increases because of increased capital investment in the electricity sub-sector.
An equivalent of 3.5% of Zambia's Total GDP per year is required as capital investment.

Electrification helps reduce deforestation.

· However, increased use of charcoal (switching from primary biomass) causes more deforestation.

- . The system is sensitive to the energy demand and cost of renewable technologies
- · The impact of discount rate in the Zambia system is minimal.

Sensitivity Analysis - Relative impacts of varying systems variables

FURTHER WORK

- Include fluctuations in river-flow due to climate variability and projected climate change patterns in the Southern
 Africa region.
- Disaggregate the Transport sector demand by taking into account the transportation mode shifts
- Analyse the impacts that changes in projected energy prices will have on the growth of the economy.

REFERENCES

- GRZ, 2006. VISION 2030, Lusaka.
- CSO, 2012. National Descriptive Tables, Available at: http://www.zamstats.gov.zm/.
- IAEA, 2005. Energy indicators for sustainable development: guidelines and methodologies. Vienna: International Atomic Energy Agency, 2005.
- IEA, 2012. Energy Statistics of Non-OECD Countries: 2012 Edition., 1(September). Available at: http://www.esds.ac.uk/international/doipages/ieaesnon.asp.
- Pandey, R., 2002. Energy policy modelling: agenda for developing countries. Energy Policy, 30, pp.97–106.
- Rachmatullah, C, Aye, L and Fuller, R J 2007. Scenario planning for the electricity generation in Indonesia. Energy policy. 35(4):2352-2359.
- Soontornrangson, W, Evans, D G, Fuller, R J and Stewart, D F 2003. Scenario planning for electricity supply. Energy policy, 31(15):1647-1659.

UCL Energy Institute